Leitura e Escrita no SD

Escrito por Gabriel Aleksandravicius

Objetivo#

O objetivo do teste de leitura e escrita do cartão SD é verificar a velocidade máxima com que conseguimos acessar, ler e salvar dados no cartão SD com o módulo utilizado.

Como fazer#

Hardware#

Os módulos SD se comunicam com o microcontrolador através do protocolo SPI, portanto serão necessários pelo menos os seguintes pinos: VCC e GND, MOSI, MISO, CLK e CS. O módulo da Adafruit utilizado no Aurora v2 possui também o pino CD.

Biblioteca#

Existem duas bibliotecas principais de SD: Sd, padrão do Arduino, e SdFat, desenvolvida pelo Bill Greiman. A primeira é bem funcional na maioria dos casos, porém falha em situações mais extremas onde maiores velocidades são exigidas. A segunda já é mais otimizada para isso, portanto optamos por ela. Você pode encontrá-la na aba de Libraries do PlatformIO ou no seurepositório do github.

Uma boa notícia é que essa biblioteca já disponibiliza uma série de códigos de exemplos úteis, um deles sendo justamente um teste de benchmark onde são avaliadas as latências máxima, mínima e média da leitura e escrita no cartão.

Código de exemplo#

// O objetivo deste código é testar os tempos de leitura e escrita
// do seu módulo do cartão SD.
// Verifique os pinos e a frequência de clock.
#include <SPI.h>
#include "SdFat.h"
#include "sdios.h"
#include "FreeStack.h"
// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h,
// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT.
#define SD_FAT_TYPE 0
/*
Change the value of SD_CS_PIN if you are using SPI and
your hardware does not use the default value, SS.
Common values are:
Arduino Ethernet shield: pin 4
Sparkfun SD shield: pin 8
Adafruit SD shields and modules: pin 10
*/
// SDCARD_SS_PIN is defined for the built-in SD on some boards.
#ifndef SDCARD_SS_PIN
const uint8_t SD_CS_PIN = SS;
#else // SDCARD_SS_PIN
// Assume built-in SD is used.
const uint8_t SD_CS_PIN = SDCARD_SS_PIN;
#endif // SDCARD_SS_PIN
// Try max SPI clock for an SD. Reduce SPI_CLOCK if errors occur.
#define SPI_CLOCK SD_SCK_MHZ(50)
// Try to select the best SD card configuration.
#if HAS_SDIO_CLASS
#define SD_CONFIG SdioConfig(FIFO_SDIO)
#elif ENABLE_DEDICATED_SPI
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI, SPI_CLOCK)
#else // HAS_SDIO_CLASS
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI, SPI_CLOCK)
#endif // HAS_SDIO_CLASS
// Set PRE_ALLOCATE true to pre-allocate file clusters.
const bool PRE_ALLOCATE = true;
// Set SKIP_FIRST_LATENCY true if the first read/write to the SD can
// be avoid by writing a file header or reading the first record.
const bool SKIP_FIRST_LATENCY = true;
// Size of read/write.
const size_t BUF_SIZE = 512;
// File size in MB where MB = 1,000,000 bytes.
const uint32_t FILE_SIZE_MB = 5;
// Write pass count.
const uint8_t WRITE_COUNT = 2;
// Read pass count.
const uint8_t READ_COUNT = 2;
//==============================================================================
// End of configuration constants.
//------------------------------------------------------------------------------
// File size in bytes.
const uint32_t FILE_SIZE = 1000000UL*FILE_SIZE_MB;
// Insure 4-byte alignment.
uint32_t buf32[(BUF_SIZE + 3)/4];
uint8_t* buf = (uint8_t*)buf32;
#if SD_FAT_TYPE == 0
SdFat sd;
File file;
#elif SD_FAT_TYPE == 1
SdFat32 sd;
File32 file;
#elif SD_FAT_TYPE == 2
SdExFat sd;
ExFile file;
#elif SD_FAT_TYPE == 3
SdFs sd;
FsFile file;
#else // SD_FAT_TYPE
#error Invalid SD_FAT_TYPE
#endif // SD_FAT_TYPE
// Serial output stream
ArduinoOutStream cout(Serial);
//------------------------------------------------------------------------------
// Store error strings in flash to save RAM.
#define error(s) sd.errorHalt(&Serial, F(s))
//------------------------------------------------------------------------------
void cidDmp() {
cid_t cid;
if (!sd.card()->readCID(&cid)) {
error("readCID failed");
}
cout << F("\nManufacturer ID: ");
cout << hex << int(cid.mid) << dec << endl;
cout << F("OEM ID: ") << cid.oid[0] << cid.oid[1] << endl;
cout << F("Product: ");
for (uint8_t i = 0; i < 5; i++) {
cout << cid.pnm[i];
}
cout << F("\nVersion: ");
cout << int(cid.prv_n) << '.' << int(cid.prv_m) << endl;
cout << F("Serial number: ") << hex << cid.psn << dec << endl;
cout << F("Manufacturing date: ");
cout << int(cid.mdt_month) << '/';
cout << (2000 + cid.mdt_year_low + 10 * cid.mdt_year_high) << endl;
cout << endl;
}
//------------------------------------------------------------------------------
void clearSerialInput() {
uint32_t m = micros();
do {
if (Serial.read() >= 0) {
m = micros();
}
} while (micros() - m < 10000);
}
//------------------------------------------------------------------------------
void setup() {
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
delay(1000);
cout << F("\nUse a freshly formatted SD for best performance.\n");
if (!ENABLE_DEDICATED_SPI) {
cout << F(
"\nSet ENABLE_DEDICATED_SPI nonzero in\n"
"SdFatConfig.h for best SPI performance.\n");
}
// use uppercase in hex and use 0X base prefix
cout << uppercase << showbase << endl;
}
//------------------------------------------------------------------------------
void loop() {
float s;
uint32_t t;
uint32_t maxLatency;
uint32_t minLatency;
uint32_t totalLatency;
bool skipLatency;
// Discard any input.
clearSerialInput();
// F() stores strings in flash to save RAM
cout << F("Type any character to start\n");
while (!Serial.available()) {
SysCall::yield();
}
#if HAS_UNUSED_STACK
cout << F("FreeStack: ") << FreeStack() << endl;
#endif // HAS_UNUSED_STACK
if (!sd.begin(SD_CONFIG)) {
sd.initErrorHalt(&Serial);
}
if (sd.fatType() == FAT_TYPE_EXFAT) {
cout << F("Type is exFAT") << endl;
} else {
cout << F("Type is FAT") << int(sd.fatType()) << endl;
}
cout << F("Card size: ") << sd.card()->sectorCount()*512E-9;
cout << F(" GB (GB = 1E9 bytes)") << endl;
cidDmp();
// open or create file - truncate existing file.
if (!file.open("bench.dat", O_RDWR | O_CREAT | O_TRUNC)) {
error("open failed");
}
// fill buf with known data
if (BUF_SIZE > 1) {
for (size_t i = 0; i < (BUF_SIZE - 2); i++) {
buf[i] = 'A' + (i % 26);
}
buf[BUF_SIZE-2] = '\r';
}
buf[BUF_SIZE-1] = '\n';
cout << F("FILE_SIZE_MB = ") << FILE_SIZE_MB << endl;
cout << F("BUF_SIZE = ") << BUF_SIZE << F(" bytes\n");
cout << F("Starting write test, please wait.") << endl << endl;
// do write test
uint32_t n = FILE_SIZE/BUF_SIZE;
cout <<F("write speed and latency") << endl;
cout << F("speed,max,min,avg") << endl;
cout << F("KB/Sec,usec,usec,usec") << endl;
for (uint8_t nTest = 0; nTest < WRITE_COUNT; nTest++) {
file.truncate(0);
if (PRE_ALLOCATE) {
if (!file.preAllocate(FILE_SIZE)) {
error("preAllocate failed");
}
}
maxLatency = 0;
minLatency = 9999999;
totalLatency = 0;
skipLatency = SKIP_FIRST_LATENCY;
t = millis();
for (uint32_t i = 0; i < n; i++) {
uint32_t m = micros();
if (file.write(buf, BUF_SIZE) != BUF_SIZE) {
error("write failed");
}
m = micros() - m;
totalLatency += m;
if (skipLatency) {
// Wait until first write to SD, not just a copy to the cache.
skipLatency = file.curPosition() < 512;
} else {
if (maxLatency < m) {
maxLatency = m;
}
if (minLatency > m) {
minLatency = m;
}
}
}
file.sync();
t = millis() - t;
s = file.fileSize();
cout << s/t <<',' << maxLatency << ',' << minLatency;
cout << ',' << totalLatency/n << endl;
}
cout << endl << F("Starting read test, please wait.") << endl;
cout << endl <<F("read speed and latency") << endl;
cout << F("speed,max,min,avg") << endl;
cout << F("KB/Sec,usec,usec,usec") << endl;
// do read test
for (uint8_t nTest = 0; nTest < READ_COUNT; nTest++) {
file.rewind();
maxLatency = 0;
minLatency = 9999999;
totalLatency = 0;
skipLatency = SKIP_FIRST_LATENCY;
t = millis();
for (uint32_t i = 0; i < n; i++) {
buf[BUF_SIZE-1] = 0;
uint32_t m = micros();
int32_t nr = file.read(buf, BUF_SIZE);
if (nr != BUF_SIZE) {
error("read failed");
}
m = micros() - m;
totalLatency += m;
if (buf[BUF_SIZE-1] != '\n') {
error("data check error");
}
if (skipLatency) {
skipLatency = false;
} else {
if (maxLatency < m) {
maxLatency = m;
}
if (minLatency > m) {
minLatency = m;
}
}
}
s = file.fileSize();
t = millis() - t;
cout << s/t <<',' << maxLatency << ',' << minLatency;
cout << ',' << totalLatency/n << endl;
}
cout << endl << F("Done") << endl;
file.close();
}

Exemplo de output#

Obs: O output abaixo foi gerado numa versão anterior desse código de testes, porém é bem parecido com o que você deve esperar.

Type any character to start
FreeStack: 1037
Type is FAT32
Starting print test. Please wait.
Test of println(uint16_t)
Time 5.84 sec
File size 128.89 KB
Write 22.06 KB/sec
Maximum latency: 11296 usec, Minimum Latency: 112 usec, Avg Latency: 281 usec
Test of printField(uint16_t, char)
Time 1.93 sec
File size 128.89 KB
Write 66.68 KB/sec
Maximum latency: 39052 usec, Minimum Latency: 36 usec, Avg Latency: 85 usec
Test of println(uint32_t)
Time 9.09 sec
File size 200.00 KB
Write 22.00 KB/sec
Maximum latency: 42996 usec, Minimum Latency: 380 usec, Avg Latency: 443 usec
Test of printField(uint32_t, char)
Time 2.67 sec
File size 200.00 KB
Write 75.05 KB/sec
Maximum latency: 46644 usec, Minimum Latency: 64 usec, Avg Latency: 122 usec
Test of println(float)
Time 9.96 sec
File size 149.00 KB
Write 14.95 KB/sec
Maximum latency: 43052 usec, Minimum Latency: 376 usec, Avg Latency: 487 usec
Test of printField(float, char)
Time 3.81 sec
File size 149.00 KB
Write 39.10 KB/sec
Maximum latency: 46360 usec, Minimum Latency: 124 usec, Avg Latency: 179 usec
Done!